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Abstract

Virtual Knowledge Graphs (VKG) constitute one of the most promising paradigms
for integrating and accessing legacy data sources. A critical bottleneck in the
integration process involves the definition, validation, andmaintenance ofmappings
that link data sources to a domain ontology. To support the management of
mappings throughout their entire lifecycle, we propose a comprehensive catalog of
sophisticated mapping patterns that emerge when linking databases to ontologies.
To do so, we build on well-established methodologies and patterns studied in
data management, data analysis, and conceptual modeling. These are extended
and refined through the analysis of concrete VKG benchmarks and real-world use
cases, and considering the inherent impedance mismatch between data sources and
ontologies. We validate our catalog on the considered VKG scenarios, showing
that it covers the vast majority of patterns present therein.

1 Introduction
Data integration and access to legacy data sources using end user-oriented languages
are increasingly challenging contemporary organizations. In the whole spectrum of
data integration and access solutions, the approach based on Virtual Knowledge Graphs
(VKG) is gaining momentum, especially when the underlying data sources to be inte-
grated come in the form of relational databases (DBs) [40]. VKGs replace the rigid
structure of tables with the flexibility of a graph that incorporates domain knowledge
and is kept virtual, eliminating duplications and redundancies. A VKG specification
consists of three main components: (i) data sources (in the context of this paper, con-
stituted by relational DBs) where the actual data are stored; (ii) a domain ontology,
capturing the relevant concepts, relations, and constraints of the domain of interest;
(iii) a set of mappings linking the data sources to the ontology. One of the most critical
bottlenecks towards the adoption of the VKG approach, especially in complex, enter-
prise scenarios, is the definition and management of mappings. These mappings play a
central role in a variety of data management tasks, within both the semantic web and the
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DB communities. For example, in schema matching, mappings (typically referred to as
matches) aim at expressing correspondences between atomic, constitutive elements of
two different relational schemas, such as attributes and relation names [34]. This simple
type of mappings led to a plethora of very sophisticated (semi-)automated techniques
to bootstrap mappings without prior knowledge on the two schemata [14, 12, 38].
A similar setting arises in the context of ontology matching (also referred to as

ontology alignment), where the atomic elements to be put in correspondence are classes
and properties [15]. Just like with schema matching, a huge body of applied research
has led to effective (semi-)automatic techniques for establishing mappings [22, 25].
In data exchange, instead, more complex mapping specifications (like the well-

known formalism of TGDs) are needed so as to express how data extracted from a
source DB schema should be used to populate a target DB schema [28]. Due to the
complex nature of these mappings, research in this field has been mainly foundational,
with some notable exceptions [16, 11].
The VKG approach appears to be the one that poses the most advanced challenges

when it comes to mapping specification, debugging, and maintenance. Indeed, on the
one hand, VKG mappings are inherently more sophisticated than those used in schema
and ontologymatching. On the other hand, while they appear to resemble those typically
used in data exchange, they need to overcome the abstraction mismatch between the
relational schema of the underlying data storage, and the target ontology; consequently,
they are required to explicitly handle how (tuples of) data values extracted from the DB
lead to the creation of corresponding objects in the ontology.
As a consequence, management of VKG mappings throughout their entire lifecycle

is currently a labor-intensive, essentially manual effort, which requires highly-skilled
professionals [39] that, at once: (i) have in-depth knowledge of the domain of discourse
and how it can be represented using structural conceptual models (such as UML class
diagrams) and ontologies; (ii) possess the ability to understand and query the logi-
cal and physical structure of the DB; and (iii) master languages, methodologies, and
technologies for representing the ontology and the mapping using standard frameworks
from semantic web (such as OWL and R2RML). Even in the presence of all these skills,
writing mappings is demanding and poses a number of challenges related to semantics,
correctness, and performance. More concretely, no comprehensive approach currently
exists to support ontology engineers in the creation of VKG mappings, exploiting all
the involved information artifacts to their full potential: the relational schema with
its constraints and the extensional data stored in the DB, the ontology axioms, and a
conceptual schema that lies, explicitly or implicitly, at the basis of the relational schema.
Bootstrapping techniques [23, 24] have been developed to relieve the ontology

engineer from the “blank paper syndrome.” However, they are typically adopted in sce-
narios where neither the ontology nor the mappings are initially available, and where
various assumptions are posed over the schema of the DB (e.g., in terms of normaliza-
tion). Hence, they essentially bootstrap at once the ontology, as a lossless mirror of the
DB, and corresponding one-to-one mappings. This explains why bootstrapping tech-
niques cannot properly handle the relevant, practical cases where the relational schema
is poorly structured (e.g., a denormalized, legacy DB), and/or where the ontology is
already given and presents a true abstraction mismatch with the DB.
These recurring scenarios typically emerge in the common situation where both
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the ontology and the DB schema are derived from a conceptual analysis of the domain
of interest. The resulting knowledge may stay implicit, or may lead to an explicit
representation in the form of a structural conceptual model, which can be represented
using well-established notations such as UML, ORM, or E-R. On the one hand, this
conceptual model provides the basis for creating a corresponding domain ontology
through a series of semantic-preserving transformation steps. On the other hand, it
can trigger the design process that finally leads to the deployment of an actual DB.
This is done via a series of restructuring and adaptation steps, considering a number
of aspects that go beyond pure conceptualization, such as query load, performance,
volume, and taking into account the abstraction gap that exists between the conceptual
and logical/physical layers. It is precisely the reconciliation of these two transformation
chains (resp., from the conceptual model to the ontology, and from the conceptual
model to the DB) that is reflected in the VKG mappings.
In this work, we build on this key observation and propose a catalog of mapping

patterns that emerge when linking DBs to ontologies. To do so, we build on well-
establishedmethodologies and patterns studied in datamanagement (such asW3Cdirect
mappings – W3C-DM [1] – and their extensions), data analysis (such as algorithms
for discovering dependencies), and conceptual modeling (such as relational mapping
techniques). These are suitably extended and refined, by considering the inherent
impedance mismatch between data sources and ontologies, which requires to handle
how objects are built starting from DB values, and by analyzing the concrete mapping
strategies arising from sixVKGbenchmarks and real-world use cases, covering a variety
of different application domains.
The resulting patterns do not simplistically consider single elements from the differ-

ent information artefacts, but rather tackle more complex structures arising from their
combination, and potentially from the cascaded application with other patterns.
Exploiting this holistic approach, we then discuss how the proposed patterns can

be employed in a variety of VKD design scenarios, depending on which information
artifacts are available, and which ones have to be produced.
Finally, we go back to the concrete VKG scenarios and benchmarks, and report on

the coverage of mappings appearing therein in terms of our patterns, as well as on how
many times the same pattern recurs. This also gives an interesting indication on which
patterns are more pervasively used in practice.

2 Preliminaries
In this work, we use the bold font to denote tuples, e.g., x, y are tuples. When
convenient, we treat tuples as sets and allow the use of set operators on them.
We rely on the VKG framework of [33], which we formalize here through the notion

of VKG specification, which is a triple S = 〈T ,M,Σ〉 where T is an ontology TBox,
M is a set of mappings, and Σ is the schema of a DB. The ontology T is formulated
in OWL2QL [30], whose formal counterpart is the description logic DL-LiteR [9],
and for conciseness we actually adopt the DL notation. Consider four mutually disjoint
sets NI of individuals, NC of class names, NP of object property names, and ND of
data property names. Then an OWL2QL TBox T is a finite set of axioms of the form
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𝐵 v 𝐶 or 𝑟1 v 𝑟2, where 𝐵,𝐶 are classes and 𝑟1, 𝑟2 are object properties, according to
the following grammar, where 𝐴 ∈ NC, 𝑑 ∈ ND, and 𝑝 ∈ NP:

𝐵 → 𝐴 | ∃𝑟 | ∃𝑑 𝐶 → 𝐵 | ¬𝐵 𝑟 → 𝑝 | 𝑝−

Observe that for simplicity of presentation we do not consider here datatypes, which
are also part of the OWL2QL standard.
Mappings specify how to populate classes and properties of the ontology with

individuals and values constructed starting from the data in the underlying DB. In
VKGs, the adopted standard language for mappings is R2RML [13], but for conciseness
we use here a more convenient abstract notation: A mapping 𝑚 is an expression of the
form

𝑠 : 𝑄(x)
𝑡 : 𝐿 (𝔱(x))

where𝑄(x) is a SQL query over the DB schema Σ, called source query, and 𝐿 (𝔱(x)) is a
target atom of the form𝐶 (𝔱1 (x1)), 𝑝(𝔱1 (x1), 𝔱2 (x2)), or 𝑑 (𝔱1 (x1), 𝔱2 (x2)), where 𝔱1 (x1)
and 𝔱2 (x2) are terms that we call templates. In this work we express source queries
using the notation of relational algebra and actually omit answer variables, assuming
that they coincide with the variables used in the target atom. Intuitively, a template
𝔱(x) in the target atom of a mapping corresponds to an R2RML template, and is used
to generate object IRIs (i.e., Internationalized Resource Identifiers) or (RDF) literals,
starting from DB values retrieved by the source query in that mapping.
As for the semantics of VKGmappings, we illustrate it by means of an example, and

refer, e.g., to [33] for more details. For examples, we use the concrete syntax adopted
in the Ontop VKG system [8], in which the answer variables of the source query are
indicated in the target atom by enclosing them in { · · · }, and in which each mapping is
identified by an Id. The following is an example mapping expressed in such syntax:
mappingId mPerson

source SELECT "ssn" FROM "person_info"

target :person /{ssn} a :Person .

The effect of such mapping, when applied to a DB instance D for Σ, is to populate the
class :Person with IRIs constructed by replacing the answer variable ssn occurring in
the template in the target atom with the corresponding assigments for that variable in
the answers to the source query evaluated over D.

3 Mapping Patterns
We now enter into the first contribution of this paper, namely a catalog of mapping
patterns. In specifying each pattern, we consider not only the three main components
of a VKG specification – namely the relevant portions of the DB schema, the ontology,
and the mapping between the two – but also the conceptual schema of the domain of
interest and the underlying data, when available. As pointed out in Section 1, we do not
fix which of these information artifacts are given, and which are produced as output,
but we simply describe how they relate to each other, on a per-pattern basis.
To present each pattern, we describe the complete set of attributes of each table.

However, these have to be understood as only those attributes that are relevant for the
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considered portion of the application domain. We show the fragment of the conceptual
schema that is affected by the pattern in E-R notation (adopting the original notation
by Chen) – but any structural conceptual modeling language, such as UML or ORM,
would work as well. To compactly represent sets of attributes, we use a small diamond
in place of the small circle used for single attributes in Chen notation. In the DB
schema, we use 𝑇 (K,A) to denote a table with name 𝑇 , primary key consisting of the
attributes K, and additional attributes A. Given a set U of attributes in 𝑇 , we denote
by unique𝑇 (U) the fact that U form a key for 𝑇 . Referential integrity constraints (like,
e.g., foreign keys) are denoted with edges, pointing from the referencing attribute(s) to
the referenced one(s). For readability, we denote sets of the form {𝑜 | condition} as
{𝑜}condition.
Formally, a mapping pattern is a quadruple (C,S,M,O) where C is a conceptul

schema, S is a database schema with a distinguished table (called pattern main table),
M is a set of mappings, and O is an (OWL2QL) ontology. In such mapping, the
pair (C,S) is the input, putting into correspondence a conceptual representation to
one of its (many) admissible (i.e., formally sound) database schemata. Such variants
are due to differences in the applied methodology, as well as to considerations about
efficiency, performance optimization, and space consumption of the final database.
The pair (M,O), instead, is the output, where the database schema ontology O is the
OWL2QL encoding of the conceptual schema C, and the setM of database schema
mappings provides the link between the S and O.
We organize patterns in two major groups: schema-driven patterns, shaped by the

structure of the DB schema and its explicit constraints, and data-driven patterns, which
in addition consider constraints emerging from specific configurations of the data in the
DB. Observe that, for each schema-driven pattern, we actually identify a data-driven
version in which the constraints over the schema are now not explicitly specified, but
hold in the data. We denote such pattern as its schema-driven counterpart, but with a
leading “D” in place of “S” (e.g., in Table 1, DE is the data-driven version of SE). The
two types of patterns can be used in combination with additional semantic information
from the ontology, for instance on how the data values from the DB translate into RDF
literals. These considerations lead us to introduce, where necessary, pattern modifiers.
It is important to note that some of the patterns come with accessory views defined

over the DB-schema. The purpose of these views is to make explicit the presence of
specific structures over the DB schema that are revealed through the application of
the pattern itself. Such views can be used themselves, together with the original DB
schema, to identify the applicability of further patterns.

3.1 Schema-driven Patterns
Next we briefly comment on schema-driven patterns, shown in Table 1.
Schema Entity (SE). This fundamental pattern considers a single table 𝑇𝐸 with
primary key K and other attributes A. The pattern captures how 𝑇𝐸 is mapped into a
corresponding class 𝐶𝐸 . The primary key of 𝑇𝐸 is employed to construct the objects
that are instances of 𝐶𝐸 , using a template 𝔱𝐸 specific for that class. Each relevant
attribute of 𝑇𝐸 is mapped to a data property of 𝐶𝐸 .
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Table 1: Schema-driven Patterns. For patterns yielding views, we show the views together with the DB
schema, separating them from the original tables using a thick horizontal bar.

E-R diagram DB schema Mapping pattern Ontology

Schema/Data Entity (SE/DE)

E

K A

𝑇𝐸 (K,A)
𝑠: 𝑇𝐸
𝑡: 𝐶𝐸 (𝔱𝐸 (K)),
{𝑑𝐴(𝔱𝐸 (K), 𝐴)}𝐴∈K∪A

{∃𝑑𝐴 v 𝐶𝐸 }𝐴∈K∪A

Schema/Data Relationship (SR/DR)

E

KE AE

F

KF AF

R

𝑇𝐸 (K𝐸 , A𝐸 ) 𝑇𝐹 (K𝐹 , A𝐹 )

𝑇𝑅 (K𝑅𝐸 , K𝑅𝐹 )
𝑠: 𝑇𝑅
𝑡: 𝑝𝑅 (𝔱𝐸 (K𝑅𝐸 ), 𝔱𝐹 (K𝑅𝐹 ))

∃𝑝𝑅 v 𝐶𝐸

∃𝑝−
𝑅
v 𝐶𝐹

In case of (_, 1) cardinality on role 𝑅𝐸 (resp., 𝑅𝐹 ), the primary key for 𝑇𝑅 is restricted to the attributes K𝑅𝐸 (resp., K𝑅𝐹 ).

Schema/Data Relationship with Identifier Alignment (SRa/DRa)

E

KE AE

F

KF UF

AF

R

𝑇𝐸 (K𝐸 , A𝐸 ) 𝑇𝐹 (K𝐹 , U𝐹 , A𝐹 )

𝑇𝑅 (K𝑅𝐸 , U𝑅𝐹 ) unique𝑅𝐹
(U𝐹 )

𝑠1: 𝑇𝑅 ZU𝑅𝐹=U𝐹
𝑇𝐹

𝑡1: 𝑝𝑅 (𝔱𝐸 (K𝑅𝐸 ), 𝔱𝐹 (K𝐹 ))
∃𝑝𝑅 v 𝐶𝐸

∃𝑝−
𝑅
v 𝐶𝐹

In case of (_, 1) cardinality on role 𝑅𝐸 (resp., 𝑅𝐹 ), the primary key for 𝑇𝑅 is restricted to the attributes K𝑅𝐸 (resp., U𝑅𝐹 ).

Schema/Data Relationship with Merging (SRm/DRm)

E

KE AE

F

KF AF

R
( , 1)

𝑇𝐹 (K𝐹 , A𝐹 )

𝑇𝐸 (K𝐸 , K𝐸𝐹 , A𝐸 )
𝑠: 𝑇𝐸
𝑡: 𝑝𝐸𝐹 (𝔱𝐸 (K𝐸 ), 𝔱𝐹 (K𝐸𝐹 ))

∃𝑝𝐸𝐹 v 𝐶𝐸

∃𝑝−
𝐸𝐹

v 𝐶𝐹

Schema/Data Reified Relationship (SRR/DRR)

E

KE AE

F

KF AF

G

KGAG

R

AR

K𝑅 := K𝑅𝐸 ∪ K𝑅𝐹 ∪ K𝑅𝐺

𝑇𝐺 (K𝐺 , A𝐺)

𝑇𝑅 (K𝑅𝐸 , K𝑅𝐹 , K𝑅𝐺 , A𝑅)

𝑇𝐸 (K𝐸 , A𝐸 ) 𝑇𝐹 (K𝐹 , A𝐹 )

𝑠: 𝑇𝑅
𝑡: 𝐶𝑅 (𝔱𝑅 (K𝑅)),
{𝑑𝐴(𝔱𝑅 (K𝑅), 𝐴)}𝐴∈K𝑅∪A𝑅

,

𝑝𝑅𝐸 (𝔱𝑅 (K𝑅), 𝔱𝐸 (K𝑅𝐸 )),
𝑝𝑅𝐹 (𝔱𝑅 (K𝑅), 𝔱𝐹 (K𝑅𝐹 )),
𝑝𝑅𝐺 (𝔱𝑅 (K𝑅), 𝔱𝐺 (K𝑅𝐺))

∃𝑝𝑅𝐸 v 𝐶𝑅

∃𝑝−
𝑅𝐸

v 𝐶𝐸

∃𝑝𝑅𝐹 v 𝐶𝑅

∃𝑝−
𝑅𝐹

v 𝐶𝐹

∃𝑝𝑅𝐺 v 𝐶𝑅

∃𝑝−
𝑅𝐺

v 𝐶𝐺

{∃𝑑−
𝐴
v 𝐶𝑅}𝐴∈K𝑅∪A𝑅

SRR applies whenever there are three or more participating roles, or when the relationship has attributes.
• If 𝑅 is identified by a strict subset 𝑋 of the participating roles, then the primary key of table 𝑇𝑅 (and the corresponding set of attributes K𝑅) is
restricted to the foreign keys corresponding to the roles in 𝑋 . For instance, if 𝑅 is identified by roles 𝑅𝐸 and 𝑅𝐺 , then the primary key of 𝑇𝑅 (and
the corresponding set of attributes K𝑅) is K𝑅𝐸 ∪ K𝑅𝐺 .

• If one of the foreign keys to a non-primary key set of attributes, the object property relative to that foreign key is dealt with as in SRa.

Schema/Data Hierarchy (SH/DH)

F AF

E

KE

AE

𝑇𝐸 (K𝐸 , A𝐸 )

𝑇𝐹 (K𝐹𝐸 , A𝐹 )

𝑠: 𝑇𝐹
𝑡: 𝐶𝐹 (𝔱𝐸 (K𝐹𝐸 )),
{𝑑𝐴(𝔱𝐸 (K𝐹𝐸 ), 𝐴)}𝐴∈A𝐹

𝐶𝐹 v 𝐶𝐸

{∃𝑑−
𝐴
v 𝐶𝐹 }𝐴∈A𝐹

Schema/Data Hierarchy with Identifier Alignment (SHa/DHa)

F AF

KF

E

KE AE

𝑇𝐸 (K𝐸 , A𝐸 )

𝑇𝐹 (K𝐹 , U𝐹 , A𝐹 )

unique𝑇𝐹 (U𝐹 )

𝑇𝐸 (K𝐸 , A𝐸 )

𝑉𝐹 (K𝐹 , U𝐹 , A𝐹 ) = 𝑇𝐹

unique𝑉𝐹
(K𝐹 )

𝑠: 𝑇𝐹
𝑡: 𝐶𝐹 (𝔱𝐸 (U𝐹 )),
{𝑑𝐴(𝔱𝐸 (U𝐹 ), 𝐴)}𝐴∈K𝐹∪A𝐹

𝐶𝐹 v 𝐶𝐸

{∃𝑑−
𝐴
v 𝐶𝐹 }𝐴∈K𝐹∪A𝐹

In this pattern, the “alignment” is meant to align the primary identifier used in the child entity to the primary identifier used in the parent entity.
We here depict the most common scenario, where the foreign key points to the primary key of the parent entity. The other two possiblities for the
application of the pattern are:
• the foreign key in the child entity coincides with the primary key of that entity, and references a non-primary key of the parent entity;
• the foreign key in the child entity does not coincide with the primary key of that entity, and references a non-primary key of the parent entity.

Schema/Data Hierarchy with Advanced Alignment (SHaa/DHaa)

F AF

E

KE ∪KEF

AE

K𝐸 in 𝐹 is a constant c,
K𝐸𝐹 alone identifies 𝐹 .

𝑇𝐸 (K𝐸 , K𝐸𝐹 , A𝐸 )

𝑇𝐹 (K𝐹 , A𝐹 )

𝑠: 𝜋c,K𝐹
(𝑇𝐹 )

𝑡: 𝐶𝐹 (𝔱𝐸 (c,K𝐹 )),
{𝑑𝐴(𝔱𝐸 (c,K𝐹 ), 𝐴)}𝐴∈A𝐹

𝐶𝐹 v 𝐶𝐸

{∃𝑑−
𝐴
v 𝐶𝐹 }𝐴∈A𝐹

K𝐸 is not inherited by the child table, because it is a constant value c. The dependency between 𝑇𝐹 and 𝑇𝐸 is an inclusion dependency, rather than a
foreign key dependency.
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Example: A client registry table containing SSNs of clients, together with their name as
an additional attribute, is mapped to a Client class using the SSN to construct its objects.
In addition, the SSN and name are mapped to two corresponding data properties.
References: This pattern is widespread, and it is already mentioned in the W3C-DM.
Schema Relationship (SR). This pattern considers three tables 𝑇𝑅, 𝑇𝐸 , and 𝑇𝐹 , in
which the primary key of 𝑇𝑅 is partitioned into two parts K𝑅𝐸 and K𝑅𝐹 that are foreign
keys to 𝑇𝐸 and 𝑇𝐹 , respectively. 𝑇𝑅 has no additional attributes. The pattern captures
how 𝑇𝑅 is mapped to an object property 𝑝𝑅, using the two parts K𝑅𝐸 and K𝑅𝐹 of the
primary key to construct respectively the subject and the object of the triples in 𝑝𝑅.
Example: An additional table in the client registry stores the addresses of each client,
and has a foreign key to a table with locations. The former table is mapped to an address
object property, for which the ontology asserts that the domain is the class Person and
the range an additional class Location, which corresponds to the latter table.
References: This pattern iswidespread. For instance, it is described both inBootOX [23]
and in Mirror [29].
Schema Relationship with Identifier Alignment (SRa). Such pattern is pattern SR
plus a modifier a, indicating that the pattern can be applied after the identifiers involved
in the relationship have been aligned. The alignment is necessary because now the
foreign key in 𝑇𝑅 does not point to the primary key K𝐹 of 𝑇𝐹 , but to an additional key
U𝐹 . Since the instances of the class 𝐶𝐹 corresponding to 𝑇𝐹 are constructed using the
primary key K𝐹 of 𝑇𝐹 (cf. pattern SE), also the pairs that populate 𝑝𝑅 should refer in
their object position to that primary key, which can only be retrieved by a join between
𝑇𝑅 and 𝑇𝐹 on the additional key.
Note that alignment variants can be defined in a straightforward way for other

patterns involving relationships. For conciseness, we prune these variants from our
catalog.
Example: The primary key of the table with locations is not given by the city and street,
which are used in the table that relates clients to their addresses, but is given by the
latitude and longitude of locations.
References: This pattern is widespread. In particular, the alignment of identifiers is
mentioned in the W3C-DM.
Schema Relationship with Merging (SRm). Such pattern considers a table 𝑇𝐸 in
which the foreign key K𝐸𝐹 to a table 𝑇𝐹 is disjoint from its primary key K𝐸 . The table
𝑇𝐸 is mapped to an object property, whose subject and object are derived respectively
from K𝐸 and K𝐸𝐹 .
Example: The relationship between a client and its unique billing address has been
merged into the client table. In the ontology, a billingAddress object property relates the
Client class to the Location class, and is populated via a mapping from the client table.
References: This pattern is widespread, and is one of the basic patterns described in the
W3C-DM.
Schema Reified Relationship (SRR). Such pattern considers a table𝑇𝑅 whose primary
key is partitioned in at least three parts K𝑅𝐸 , K𝑅𝐹 , and K𝑅𝐺 , that are foreign keys to
three additional tables; or when the primary key is partitioned in at least two such parts,
but there are additional attributes in 𝑇𝑅. Such a table naturally corresponds to an 𝑛-ary
relationship 𝑅 with 𝑛 > 2 (or with attributes), and to represent it at the ontology level
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we require a class 𝐶𝑅, which reifies 𝑅, whose instances are built from the primary key
of 𝑇𝑅. The mapping accounts for the fact that the components of the 𝑛-ary relationship
have to be represented by suitable object properties, one for each such component, and
that the tuples that instantiate these object properties can all be derived from 𝑇𝑅 alone.
Example: A table containing information about university exams, which involve a stu-
dent, a course, and a professor teaching that course. This information is represented
by a relationship that is inherently ternary. The ontology should contain a class corre-
sponding to the reified relationship, e.g., a class Exam.
References: This pattern, which corresponds to reification in ontological and concep-
tual modeling [10, 3], is one of the basic patterns described in the W3C-DM. A variant
of it is also present in Mirror where, however, reification is required in the data.
Schema Hierarchy (SH). Such pattern considers a table 𝑇𝐹 whose primary key is a
foreign key to a table 𝑇𝐸 . Then, 𝑇𝐹 is mapped to a class 𝐶𝐹 in the ontology that is a
sub-class of the class 𝐶𝐸 to which 𝑇𝐸 is mapped. Hence, 𝐶𝐹 “inherits” the template 𝔱𝐸
of 𝐶𝐸 , so that the instances of the two classes are “compatible”.
Example: An entity Student in an ISA relation with an entity Person.
References: This pattern goes beyond W3C-DM, and is first discussed in Mirror (but
not in the form presented here) and BootOX.
Schema Hierarchy with Identifier Alignment (SHa). Such pattern is like SH, but
the foreign key in 𝑇𝐹 is over a key U𝐹 that is not primary. The objects for𝐶𝐹 have to be
built out of U𝐹 , rather than out of its primary key. For this purpose, the pattern creates
a view 𝑉𝐹 in which U𝐹 is the primary key, and the foreign key relations are preserved.
Example: An ISA relation between entities Student and Person. Students are identified
by their matriculation number, whereas persons are identified by their SSN.
References: We are not aware of works formalizing, or identifying, this pattern.

3.2 Data Driven Mapping Patterns
Data-driven patterns are mapping patterns that depends both on the schema and on
the actual data in the DB. They are not limited to the variants corresponding to the
schema-driven patterns, but they also comprehend specific patterns that do not have
a corresponding schema version, e.g., due to denormalized tables. Such patterns, for
which we provide a detailed description below, are shown in Table 2.
Data Entity with Merged 1-N Relationship and Entity with Attributes (DR1Nm).
Such pattern considers a table 𝑇𝐸 that has, besides its primary key K𝐸 , also attributes
K𝐹 which functionally determine attributes A𝐹 . Observe that the latter condition is
not possible if the DB schema is in normal form. When this pattern is applied, the key
K𝐹 and the attributes A𝐹 that go along with it, can be projected out from 𝑇𝐹 , resulting
in a view 𝑉𝐹 to which further patterns can be applied, including DR1Nm itself on
additional attributes. Two additional views 𝑉𝐸 and 𝑉𝑅 are created, representing the
tables corresponding to the entities 𝐸 and 𝑅, respectively.
Example: A single students table containing information about students and attended
courses, e.g., the course identifier and the course name. The course identifier, which is
not a key for students, uniquely determines course names. The ontology defines both a
Student and a Course class. The course identifier is used to build instances of Course,
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and course name is mapped to a data property that has as domain the Course class.
References: We are not aware of works formalizing, or identifying, this pattern.
Data 1-1 Relationship with Merging (DR11m). Such pattern could be applied when
a table 𝑇𝐸 has, besides its primary key K𝐸 , also an additional key K𝐹 , and domain
knowledge or the ontology indicate that objects whose IRI is constructed from K𝐹

are relevant in the domain, and that they have data properties that correspond to the
attributes A𝐹 of 𝑇𝐸 . When this pattern is applied, the key K𝐹 and the attributes A𝐹 that
go along with it, can be projected out from 𝑇𝐸 , resulting in a view 𝑉𝐸 to which further
patterns can be applied, including DR11m itself on additional attributes.
Example: A single table containing the information about universities, and the informa-
tion about their rector. The ontology contains both a University and a Rector class. The
attribute SSN, identifying rectors, is used to build instances of Rector, and additional
attributes that intuitively belong to the rector (such as his name) are mapped to data
properties that have as domain the Rector class (as opposed to the University class). No-
tice that domain knowledge is required to apply this pattern. E.g., if the table contains
an attribute for the salary of the rector, this could either be considered a property of the
university (e.g., if the rector salary is determined by some regulation), or of the rector
(e.g., if the rector salary is negotiated individually).
References: We are not aware of works formalizing, or identifying, this pattern.
Data Entity with Optional Participation in a Relationship (DH01). Such pattern is
characterized by a table 𝑇𝐸 that represents the merge of child entity 𝐸𝑅 into a father
entity 𝐸 , and 𝐸𝑅 has a mandatory participation in a relationship 𝑅. The join between
the table 𝑇𝑅 and 𝑇𝐸 identifies the objects in 𝐸 instances of 𝐸𝑅, and is used in a mapping
to create instances of the class 𝐶𝑅𝐸

, as well as the object property 𝑅 connecting 𝐸𝑅 to
𝐹. This pattern produces a view 𝑉𝐸𝑅

to which further patterns can be applied.
Example: A students table and a table connecting students to undergraduate courses.
Each student participating such relationship is an undergraduate student.
References: To the best of our knowledge, this pattern was first described in BootOX,
which also provides techniques to automatically discover and use it to generate map-
pings.
Clustering Entity to Class/Data Property/Object Property (CE2C/CE2D/CE2O).
Such patterns are characterized by an entity 𝐸 and a derivation rule defining sub-entities
of 𝐸 according to the values for attributes B in 𝐸 . Instances in these sub-entities can be
mapped to objects in the subclasses 𝐶v

𝐸
of the ontology (CE2C), to objects connected

through a data property to some literal constructed through a value invention function
𝜉 applied on v (CE2D), or to objects connected through an object property to some
IRI built from v (CE2O). The definition of 𝜉 depends on the actual ontology. As other
patterns, this pattern produces views according to the possible values v of B.
Example: A table contains people with an attribute defining their gender and ranging
over ’F’ or ’M’. The ontology defines a data property hasGender, ranging over the two
RDF literals "Male" and "Female". Then, pattern CE2D clusters the table according to
the gender attribute, so as to obtain objects to be linked to either of the two RDF literals.
References: For what concerns the CE2C variant, the clustering pattern is widespread,
and it is mentioned in several works on bootstrapping like BootOX. We are not aware
of mentions regarding the CE2D and CE2O variants.
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Table 2: Data-driven Patterns

E-R diagram DB schema Mapping pattern Ontology

Data Entity with Merged 1-N Relationship and Entity (DR1Nm)

E

KE AE

F

KF AF

R
( , 1)

𝑇𝐸 (K𝐸 ,A𝐸 ,K𝐹 ,A𝐹 )
fd(𝑇𝐸 : K𝐹 → A𝐹 )
𝑉𝐸 (K𝐸 , A𝐸 ) = 𝜋K𝐸 ,A𝐸

(𝑇𝐸 )

𝑉𝑅 (K𝐸 , K𝐹 ) = 𝜋K𝐸 ,K𝐹
(𝑇𝐸 )

𝑉𝐹 (K𝐹 , A𝐹 ) = 𝜋K𝐹 ,A𝐹
(𝑇𝐸 )

𝑠: 𝑇𝐸
𝑡: 𝐶𝐹 (𝔱𝐹 (K𝐹 )),
{𝑑𝐴(𝔱𝐹 (K𝐹 ), 𝐴)}𝐴∈K𝐹∪A𝐹

,

𝑝𝑅 (𝔱𝐸 (K𝐸 ), 𝔱𝐹 (K𝐹 ))

{∃𝑑𝐴 v 𝐶𝐹 }𝐴∈K𝐹∪A𝐹

∃𝑝𝑅 v 𝐶𝐸

∃𝑝−
𝑅
v 𝐶𝐹

Data 1-1 Relationship with Merging (DR11m)

E

KE AE

F

KF AF

R
(1, 1) (1, 1)

𝑇𝐸 (K𝐸 ,A𝐸 ,K𝐹 ,A𝐹 )
unique𝑇𝐸 (K𝐹 )

𝑉𝑅 (K𝐸 , K𝐹 ) = 𝜋K𝐸 ,K𝐹
(𝑇𝐸 )

𝑉𝐸 (K𝐸 , A𝐸 ) = 𝜋K𝐸 ,A𝐸
(𝑇𝐸 )

𝑉𝐹 (K𝐹 , A𝐹 ) = 𝜋K𝐹 ,A𝐹
(𝑇𝐸 )

𝑠: 𝑇𝐸
𝑡: 𝐶𝐹 (𝔱𝐹 (K𝐹 )),
{𝑑𝐴(𝔱𝐹 (K𝐹 ), 𝐴)}𝐴∈K𝐹∪A𝐹

,

𝑝𝑅 (𝔱𝐸 (K𝐸 ), 𝔱𝐹 (K𝐹 ))

{∃𝑑𝐴 v 𝐶𝐹 }𝐴∈K𝐹∪A𝐹

∃𝑝𝑅 v 𝐶𝐸

∃𝑝−
𝑅
v 𝐶𝐹

Data Entity with Optional Participation in a Relationship (DH01)

ER F

KF AF

E

KE AE

R
(1, ∗)

𝑇𝐸 (K𝐸 , A𝐸 ) 𝑇𝐹 (K𝐹 , A𝐹 )

𝑇𝑅 (K𝑅𝐸 , K𝑅𝐹 )

𝑉𝐸𝑅
(K𝐸 ,A𝐸 ) =

𝜋K𝐸 ,A𝐸
(𝑇𝑅 ZK𝑅𝐸=K𝐸

𝑇𝐸 )

𝑠1: 𝑇𝑅
𝑡1: 𝑝𝑅 (𝔱𝐸 (K𝑅𝐸 ), 𝔱𝐹 (K𝑅𝐹 ))
𝑠2: 𝑇𝑅 ZK𝑅𝐸=K𝐸

𝑇𝐸
𝑡2: 𝐶𝐸𝑅

(𝔱𝐸 (K𝑅𝐸 )),
{𝑑𝐴(𝔱𝐸 (K𝑅𝐸 ), 𝐴)}𝐴∈K𝐸∪A𝐸

𝐶𝐸𝑅
v 𝐶𝐸

∃𝑝𝑅 v 𝐶𝐸𝑅

∃𝑝−
𝑅
v 𝐶𝐹

Clustering Entity to Class (CE2C)

E

K A

B ⊆ K ∪ A,
partitionD (B, 𝐸)

𝑇𝐸 (K,A)
unique𝑇𝐸 (K)
B ⊆ K ∪ A
partitionD (B, 𝐸)
{𝑉𝐸v (K,A) =
𝜎B=v (𝑇𝐸 )}v∈𝜋B (𝑇𝐸 )

{𝑠 : 𝜎B=v (𝑇𝐸 )
𝑡 : 𝐶v

𝐸
(𝔱𝐸 (K))}v∈𝜋B (𝑇𝐸 )

{𝐶v
𝐸
v 𝐶𝐸 }v∈𝜋B (𝑇𝐸 )

Clustering Entity to Data/Object Property (CE2D/CE2O)

E

K A

B ⊆ K ∪ A,
partitionD (B, 𝐸)

𝑇𝐸 (K,A)
unique𝑇𝐸 (K)
B ⊆ K ∪ A
partitionD (B, 𝐸)
{𝑉𝐸v (K,A) =
𝜎B=v (𝑇𝐸 )}v∈𝜋B (𝑇𝐸 )

{𝑠 : 𝜎B=v (𝑇𝐸 )
𝑡 : 𝑑B (𝔱𝐸 (K), 𝜉 (v))}v∈𝜋A (𝑇𝐸 )

∃𝑑B v 𝐶𝐸

{𝑠 : 𝜎B=v (𝑇𝐸 )
𝑡 : 𝑝B (𝔱𝐸 (K), 𝔱v (v))}v∈𝜋B (𝑇𝐸 )

∃𝑝B v 𝐶𝐸

Clustering Relationship to Object Property (CR2O)

E

KE AE

F

KF AF

R

B ⊆ K𝑅𝐸 ∪ K𝑅𝐹 ,

partitionD (B, 𝑅)

𝑇𝑅 (K𝑅𝐸 ,K𝑅𝐹 ),
B ⊆ K𝑅𝐸 ∪ K𝑅𝐹

partitionD (B, 𝑅)
{𝑉𝑅v (K𝑅𝐸 ,K𝑅𝐹 ) =
𝜎B=v (𝑇𝑅)}v∈𝜋B (𝑇𝑅)

{𝑠 : 𝜎B=v (𝑇𝑅)
𝑡 : 𝑝v

𝑅
(𝔱𝐸 (K𝑅𝐸 ),
𝔱𝐹 (K𝑅𝐹 ))}v∈𝜋B (𝑇𝑅)

{𝑝v
𝑅
v 𝑝𝑅}v∈𝜋B (𝑇𝑅)

Clustering Relationship to Object Property CR2O. Such pattern is a similar to the
previous clustering patterns, but the table being clustered corresponds to a relationship
𝑅 and the result of the clustering are sub-properties of the object property relative to 𝑅.
Example: A table relating professors to courses. Lecturers are identified by a multi-
attribute key in which one attribute discriminates between full or associate professors.
Courses are identified by a multi-attribute key in which one attribute discriminates
between undergraduate or graduate courses. Such table is mapped to four object
properties in the ontology, one for each combination of type of lecturer and type of
course (e.g., an undergraduate course taught by a full professor).
References: We are not aware of works formalizing, or identifying, this pattern.
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3.3 Variations and Combinations
More complex patterns arise from the combination of the patterns described so far. For
instance, recall the example we discussed for pattern DH01. Graduate students, which
are a by-product of the application of such pattern, might be in relationship with an
entity Graduation. The object property capturing the relationship might be created by
applying pattern DR. In our analysis, we have observed that combinations are quite
common in VKG specifications where the DB has been created independently from the
ontology.
Another important variation is the one introduced by modifiers, such as value

invention or combination, in which DB values are used and combined to get RDF
literals, typically by relying on R2RML templates. We have already encountered an
instance of value invention, specifically when we introduced the CE2D pattern.

4 Usage Scenarios for VKG Patterns
We now comment on how having a catalog of patterns for VKG specifications like the
one introduced in Section 3 is instrumental in a number of usage scenarios.
Debugging of a VKG Specification. This scenario arises when a full VKG spec-
ification is already in place and must be debugged. Here, each component of the
specification can be checked for compliance against the patterns.
Conceptual Schema Reverse Engineering. Another relevant scenario arising when a
full VKG specification is given, is that of inferring a conceptual schema of the DB that
represents the domain of interest by reflecting the content of the VKG specification.
Here the ontology provides the main source to reconstruct entities, attributes, and
relationships, while the DB and themappings provide the basis to ground the conceptual
model in the actual DB, and to infer additional constraints that are not captured by the
ontology (e.g., for limited expressivity of OWL2QL).
Mapping Bootstrapping. In this scenario, the DB and the ontology are given, but
mappings relating them are not. Patterns can be used to (semi-)automatically bootstrap
an initial set of mappings, which can then be further refined and extended manually,
possibly exploiting again the patterns. Schema patterns are the most suitable ones to
automatically guide the bootstrapping process. When patterns contain tables that merge
multiple entities/relationships, the presence of a conceptual schema becomes crucial
to configure the left-hand side of bootstrapped mappings. This is, e.g., the case for
DR1Nm andDR11m, and patterns based on clustering. If the conceptual schema is not
available in this tricky case, boostrapping can still be attempted by relying on schema
matching techniques [34], as done in BootOX. Specifically, schema matching comes
handy when a pattern involves two (or more) under-specified schemas. For instance,
in the case of pattern DR, pair candidates between primary keys can be matched in
order to make implicit relationships explicit. This can be done through matchers (such
as string similarity matchers [17]) that employ attribute names, instance data, schema
structure, etc. To separate genuine relationships from false positives generated by poor
matchers, ranking techniques have to be employed [19].
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Ontology+Mapping Bootstrapping. Here, neither the ontology nor the mappings are
given as input, and have to be synthesized. This scenario can be reduced to the one of
mapping bootstrapping by first inducing a baseline ontology mirroring the structure of
the DB schema. This ontology is typically at a much lower level of abstraction than
the one expected by domain experts. In fact, this problem can be tackled in a much
more effective way in the case where an explicit conceptual schema is provided. In this
case, standard techniques to encode conceptual schemas into corresponding ontology
axioms (e.g., [6]) can be readily applied.
VKG Bootstrapping. In this scenario, we just have a conceptual schema of the domain,
and the goal is to set up a VKG specification. The conceptual schema can be then
transformed into a normalized DB schema using well-established relational mapping
techniques (e.g., [21]). At the same time, as pointed above, a direct encoding into
ontology axioms can be applied to bootstrap the ontology. The generation of mappings
becomes then a quite trivial task, considering that the induced DB and ontology are very
close in terms of abstraction. This setting resembles, in spirit, that of object-relational
mapping, used in software engineering to instrument a DB and corresponding access
mechanisms starting from classes written in object-oriented code.

5 Analysis of Scenarios
In this sectionwe look at a number ofVKG scenarios in order to understand howpatterns
occur in practice, and with which frequency. To this purpose, we have gathered 6
different scenarios, coming either from the literature onVKGs, or from actual real-world
applications. Table 3 shows the results of our analysis, and for each cell pattern/scenario,
it reports the number of applications of that pattern over that scenario (leftmost number
in the cell) and the number of mappings involved (rightmost number in the cell). The
last column in the table reports total numbers. We have manually classified a total
of 1559 mapping assertions, falling in 407 applications of the described patterns. Of
these applications, about 52.8% are of schema-driven patterns, 44.7% of data-driven
patterns, and 2.5% are of patterns falling outside of our categorization. In the remainder
of this section we describe the detailed results for each scenario.
Berlin Sparql Benchmark (BSBM) [4]. This scenario is built around an e-commerce
use case in which products are offered by vendors and consumers review them. Such
benchmark does not natively come with mappings, but these have been created in
different works belonging to the VKG literature. We analyzed those in [27]. The
ontology in BSBM reflects quite precisely the actual organization of data in the DB.
Due to this, each mapping falls into one of the patterns we identified. Notably, in
the DB foreign key constraints are not specified. Therefore, we notice a number of
applications of data-driven patterns, which cannot be captured by simple approaches
based on W3C-DM.
NPD Benchmark (NPD) [26]. This scenario is built around the domain of oil and gas
extraction. It presents the highest number of mappings (>1k). The majority of these
were automatically generated, and fall under W3C-DM or schema-driven patterns.
There are, however, numerous exceptions. Mainly, there are a few denormalized tables
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which require the use of the DR1Nm pattern, such as for the following mapping:
mappingId Mapping :00877: Table:Extra:ex5:npdv:Quadrant
target npd:quadrant /{ wlbNamePart1} a npdv:Quadrant .

source SELECT "wlbNamePart1" FROM "wellbore_development_all"

A quadrant is not an entity in the DB schema (because wlbNamePart1 is not a key of
wellbore_development_all), but it is represented as a class in the ontology. Moreover,
quadrants have themselves their own data (resp., object) properties, triggering the
application of other patterns in composition with DR1Nm.
University Ontology Benchmark (UOBM) [41]. This scenario is built around the
academic domain. Such benchmark provides a tool to automatically generate OWL
ontologies, but does not include mappings nor a DB instance. These two have been
manually crafted in [7], by reverse-engineering the ontology. The mappings in this
setting are quite interesting, and are mostly data-driven as witnessed by the many
applications of the clustering patterns. One critical aspect about these mappings is the
use of a sophisticated version of the identifier alignment pattern modifier. Specifically,
the table People has the following primary key:
PRIMARY KEY (ID ,deptID ,uniID ,role)

Table GraduateStudent, which at the conceptual level corresponds to a subclass of the
class People, has the following key which is incompatible with the one of the superclass:
PRIMARY KEY (studentID ,deptID ,uniID)

The subclass relation between People and GraduateStudents requires the two keys to
be aligned. This is done “artificially”, in the sense that the missing field role is created
on-the–fly by the mapping:
mappingId Graduate Student
target <http :// www.Dept{deptID }.Univ{univID }.edu/{role}{ studID}> a :GraduateStudent .

source SELECT deptID , univID , studID , ’GraduateStudent ’ as role FROM GraduateStudents

Suedtirol OpenData (ST-OD)1. This is an application scenario coming from the turism
domain. The ontology has been created independently from the DB. Moreover, the DB
is itself highly de-normalized, since it is essentially a relational rendering of a JSON
file. These aspects have a direct impact on the patterns we observed. In particular, we
identified several applications of the DR11m pattern, which, as we discussed, poses a
huge challenge to automatic generation of mappings. Further complications arise from
a number of applications of the value invention pattern modifier, which appears quite
often in the form, for instance, of language tags:
mappingId municipality
target :mun/mun={ istat_code} a :Municipality ; rdfs:label {name_i}@it , {name_d}@de .

source SELECT istat_code , name_i , name_d FROM municipalities

Open Data Hub VKG (ODH)2. This setting is the one behind the SPARQL endpoint
located at the Open Data Hub portal from the Province of Bozen-Bolzano (Italy). This

1https://github.com/dinglinfang/suedTirolOpenDataOBDA
2https://sparql.opendatahub.bz.it/
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Table 3: Occurrences of Mapping Patterns over the Considered Scenarios.

BSBM NPD UOBM ODH ST-OD Cordis Total

SE 8 52 61 454 8 16 10 43 8 37 13 60 108 662
SR – – – – 2 2 – – – – 3 3 5 5
SRm 8 8 74 74 5 5 – – 7 7 10 10 97 97
SRR – – 1 12 – – – – – – 1 16 2 28
SH – – 3 132 – – – – – – – – 3 132
DE – – – – – – – – 3 7 4 9 7 16
DRm 5 5 17 17 36 36 2 2 1 1 2 2 63 63
DH – – – – 5 9 – – – – – – 5 9
DRR 2 2 – – – – – – – – – – 2 2
DR1Nm 4 4 19 54 – – – – 9 15 1 1 33 74
D11Rm – – – – – – 6 78 5 14 – – 11 92
DH0N – – – – – – – – – – 1 2 1 2
CE2C – – 11 82 6 19 5 23 – – 1 12 23 136
CE2D – – 23 49 – – – – – – – – 23 49
CE2O – – 13 148 – – – – – – – – 13 148
CR2O – – – – 1 12 – – – – 1 1 1 12
UNKNOWN – – 3 6 1 1 1 4 1 12 4 9 10 32

setting is also a denormalized one, and the same considerations we made for ST-OD
apply to this setting as well.
Cordis3. This setting is provided by SIRIS Academic S.L., a consultancy company
specialized in higher education and research, and is designed around the domain of
competitive research projects. As opposed to the previous two scenarios, this one comes
with a well-structured relational schema, which reflects in a number of applications of
schema patterns. Although in this scenario we have DB views, such views have explicit
constraints defined on them (such as, UNIQUE constraints in SQL) that allow for the
application of schema patterns.

6 Related Work
In the last two decades a plethora of tools and approaches have been developed to boot-
strap an ontology and mappings from a DB. The approaches in the literature differ in
terms of the overall purposes of the bootstrapping (e.g., OBDA, data integration, ontol-
ogy learning, check of DB schema constraints using ontology reasoning), the ontology
and mapping languages in place (e.g., OWL 2 profiles or RDFS, as ontology languages,
and R2RML or custom languages, for the specification of mappings), the different focus
on direct and/or complex mappings, and the assumed level of automation. The majority
of the most recent approaches closely followW3C-DM, deriving ontologies that mirror
the structure of the input DB.
Our work makes no exception, in the sense that many of the patterns discussed

here mostly subsume the W3C-DM recommendation. The exceptions are on those bits
where the recommendation itself differentiates from R2RML (e.g., on the treatment of
blank nodes as object identifiers).
Work in [35] is very closely related ours, as it also introduces a catalog of mapping

patterns. However, there are major differences between such work and the present,

3https://www.sirisacademic.com/wb/
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namely in that work:
• patterns are not formalized, and presented in a “by-example” fashion following
the R2RML syntax;

• patterns are derived from “commonly-occurring mapping problems” based on
the experience of the authors, whereas in this work patterns are derived from
conceptual modeling and database design principles;

• patterns are not evaluated against a number of different real-world, and complex
scenarios over heterogeneous domains and design practices as it was done here.

To the best of our knowledge, there are no other works whose main focus is a
systematic categorization of mappings in VKGs. [29] and [23] provide indeed such a
categorization, but it is aimed at supporting bootstrapping of mappings. In addition,
the vast majority of the scientific contributions, restrict their attention to the algorithms
behind the generation of mappings, notably [31, 8, 36] for the R2RML language.
Another notable difference between our work and mapping bootstrappers is that we
provide foundations towards other tasks than bootstrapping, as discussed in Section 4.
For the sake of completeness w.r.t. the existing bootstrapping approaches, we men-

tion here some of the most prominent tools that have been recently implemented. Unfor-
tunately, we have not been able to find, in their related literature, an explicit description
of the mappings generated by the tools, and this prevented us from a deeper comparison
between the mapping patterns introduced here and these approaches. In Karma [20],
(ontology) learning techniques are used to mine the source data. In the schema match-
ing literature, simple rule-based mappings are used to create a uniform representation
of the data sources to be matched, may they be schemata or ontologies [2, 18, 31].
For example, in COMA++ [2], class hierarchies, attributes, and relationship types are
mapped into a generic model based on directed acyclic graphs. Using such mappings,
schemamatchers are applied to the uniformmodel to create amatching result. Similarly,
IncMap [2] relies on a graph structure called IncGraph to represent schema elements
from both ontologies and relational schemata in a unified way. The tools that today
are by far most popular are those that are based on W3C-DM, and leave the user to
manually refine the extracted outputs, e.g., the D2RQ system [5]. In such category we
find also commercial tools, notably Ultrawrap [36] in the context of data integration.
We point also to a selection of surveys [37, 39, 32] with further information about the
tools and techniques mentioned here, and their performance evaluations.
We finally notice that, in our review, we did not find any study introducing an in

depth analysis of existing real scenarios of DB-to-ontology mapping, as we do in the
present paper, aimed at showing that the identified categories actually reflect the real
design choices and methodologies in use by the mapping designers.

7 Conclusion and Future Work
In this work we propose to use a number of mapping patterns to facilitate the task
of linking DBs to ontologies in a typical VKG setting. We argue that such patterns
can enable a number of relevant tasks, apart from the classic one of bootstrapping
mappings in an incomplete VKG scenario. Through a systematic analysis of various
VKG scenarios, ranging from benchmarks to real world and denormalized ones, we
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observed that the patterns we formalized occur in practice, and capture most cases.
This work is only a first step, with respect to both categorization of patterns,

and their actual use. Regarding the former, we plan to better explore the interaction
between patterns and pattern modifiers, such as value invention or identifier alignment.
Regarding the latter, in this paper we have used patterns to investigate, and highlight, the
specific problems to address when setting-up a VKG scenario. We plan to investigate
solutions to these problems, by exploiting approaches from other fields, e.g., schema
matching.
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