
Document Due Date: 30/04/2021
Document Submission Date: 30/04/2021

Work Package 9

Type: Report
Document Dissemination Level: Public

INODE
Intelligent Open Data Exploration

is funded by the Horizon 2020 Framework Programme of the EU for Research and Innovation.
Grant Agreement number: 863410— INODE — H2020-EU.1.4.1.3.

D9.1 – 1st Test Report

(This page has been intentionally left blank)

Page 1 of 35

D9.1 – 1st Test Report

Executive Summary

This deliverable provides the 1st test report over all services of the project.

● Section 1 describes the automatic test procedures for INODE-SQL 2.0
● Section 2 describes the automatic test procedures for INODE-SPARQL 1.0

Page 2 of 35

D9.1 – 1st Test Report

Project Information

Project Name Intelligent Open Data Exploration
Project Acronym INODE
Project Coordinator Zurich University of Applied Sciences (ZHAW), CH
Project Funded by European Commission

Under the Programme
H2020-EU.1.4.1.3. - Development, deployment and
operation of ICT-based e-infrastructures

Call H2020-INFRAEOSC-2019-1
Topic INFRAEOSC-02-2019 - Prototyping new innovative services
Funding Instrument Research and Innovation action

Grant Agreement No. 863410

Document Information

Authors(s)

Koutrika Georgia, Eleftheraki Stavroula, Glenis Apostolis,
Mandamadiotis Antonis (ATHENA)
Amer-Yahia Sihem, Patil Yogendra, Personnaz Aurélien (CNRS)
Lücke-Tieke Hendrik, May Thorsten (Fraunhofer)
Litke Antonis, Papadakis Nikolaos, Papadopoulos Dimitris (Infili)
Fabricius Maximilian, Subramanian Srividya (MPE)
Bastian Frederic, Mendes de Farias Tarcisio, Stockinger Heinz
(SIB)
Massucci Francesco, Multari Francesco, Rull Guillem (SIRIS)
Calvanese Diego, Lanti Davide, Mosca Alesandro, Guohui Xiao
(UNIBZ)
Braschler Martin, Brunner Ursin, Kosten Catherine, Smith Ellery,
Stockinger Kurt (ZHAW)

Page 3 of 35

D9.1 – 1st Test Report

Table of Contents

1 Testing INODE-SQL 2.0 5

1.1 Architecture of the Automatic Testing System 5

1.2 Structure of the Test Case Specification File 7

1.3 Example of Test Case Specification 8

1.4 Summary of Test Results 12

1.4.1 Cordis dataset 13

1.4.2 SDSS dataset 19

2 Testing INODE-SPARQL 1.0 22

2.1 Architecture of the Automatic Testing System 22

2.2 Structure of the Test Case Specification File 23

2.3 Example of Test Case Specification 24

2.4 Summary of Test Results 25

2.4.1 CORDIS SPARQL endpoint 25

2.4.2 SDSS SPARQL endpoint 28

2.4.3 OncoMX SPARQL endpoint 29

2.4.4 Bio-SODA for CORDIS 30

2.4.5 Bio-SODA for SDSS 33

Page 4 of 35

D9.1 – 1st Test Report

1 TESTING INODE-SQL 2.0

In this section we describe the automatic integration testing performed on the INODE-SQL
2.0 component of the INODE system, which integrates the different services that deal with
SQL data sources. This component is implemented by means of the OpenDataDialog 2.0
application. The integration tests target the backend of this application and simulate the
different steps of a user interaction.

1.1 Architecture of the Automatic Testing System

The aim of the current testing system is to perform an end-to-end check of the INODE-SQL
2.0 system and verify that the different services integrated by the system work together to
produce an answer to the user’s requests.

We focus on testing the functionality of the system rather than its performance, which will
be tested later in the project, since the development of the integrated services has also
been, in general, more focused on providing functionality than performance during this first
half of the project. We still report execution times, but these are merely informative and do
not determine a test’s failure or success. The only exception is a generous 20-minute timeout
on a test’s execution, which may cause it to fail. The purpose of this timeout is to guarantee
that the testing application will finish in a reasonable amount of time, and to prevent tests
from getting stuck on infinite loops or similar situations.

The architecture depicted in Figure 1.1 shows the testing application with its input and
output, namely a test case specification in JSON format as input and an HTML report of the
test results as output. The testing application executes the test cases specified in its input by
communicating with the OpenDataDialog’s backend. The OpenDataDialog 2.0 software is the
current interface of the INODE-SQL 2.0 system. It has both a frontend and backend
component. However, for the purpose of making the tests run automatically, it is more
convenient to use the backend, since the frontend requires users to hover the mouse over
certain areas to trigger contextual menus and tooltips, which is difficult to automatize.

The OpenDataDialog backend exposes an API that is called by the testing application in order
to simulate the user interactions that are encoded in the test case specification. In turn, the
API communicates with the different services that are integrated into the INODE-SQL system.
These services are:

● Natural Language-to-SQL service (implemented by the combination of the SODA and
ValueNet services)

● SQL-to-Natural Language service (implemented by the LOGOS service)
● Pipeline Operators service
● Query Recommendation service (implemented by the PyExplore service)

Each of these services provides one or more data exploration operators for the user to use. A
typical user interaction with INODE-SQL via the OpenDataDialog application consists of a
sequence of steps. At each step, the user chooses an operator to apply, and the system
responds with a set of tables. Each table is the result of a SQL statement’s execution. The SQL

Page 5 of 35

D9.1 – 1st Test Report

statement itself is also reported back to the user together with a corresponding natural
language explanation.

The first operator in a user interaction is always by-nl, in which the user provides a natural
language query for the system to interpret. Subsequent operators will be applied on one of
the tables produced by the previous operator. The by-nl operator can also be chained after
another operator, which is done by the user editing the natural language explanation of one
of the tables produced by the previous operator.

To simulate this kind of user interactions, the test case specification defines each test case as
a sequence of operator tests, each of which indicates a SQL statement that is expected to be
produced by the previous operator.

The specific test cases have been defined during the phase of manual testing of the
OpenDataDialog frontend. As mentioned above, a user’s interaction with the frontend is
difficult to automate, so we have tested it manually and taken the opportunity to identify
relevant cases that are worth automating. These relevant cases are meant to be executed
periodically to check whether changes to the services code break the system or not, and also
whether known limitations of the services have been addressed.

In terms of datasets, the test cases cover the CORDIS and SDSS datasets, which correspond to
the “R&I Policy Making” and “Astrophysics” use cases of INODE. The “Cancer Research” use
case with its dataset, OncoMX, has not yet been integrated into INODE-SQL, but it is part of
INODE-SPARQL, so its testing will be addressed in Section 2.

Figure 1.1. Architecture of the testing system for INODE SQL 2.0
Input: Test case specification in JSON format. Output: HTML report of the test results.

Page 6 of 35

D9.1 – 1st Test Report

1.2 Structure of the Test Case Specification File

The test cases are specified in JSON format, with the root of the specification file being a
JSON object of the form:

{ “testCases”: [testCase1, testCase2, ...] }

Each testCasei is a nested object that holds the name of the test case, the database on which
the test case will be run, and the sequence of operators that form the test case:

{
“name”: string,
“database”: string,
“operators”: [operator1, operator2, ...]

}

Each operatori is also a nested object, which has the following general structure:

{
“type”: string,
“inputQuery”: string,
“params”: { ... }

}

The type of the operator can be one of the following:

● by-nl
● by-recommendation
● by-superset
● by-facet
● by-filter

The input query is a SQL statement for all operators with the exception of by-nl. In the case
of by-nl, the input query is a string that contains both the natural language version of the
query and the keyword-based version, separated by a “|” symbol :

natural language query | keyword-based query

The natural language version of the query is used as input for ValueNet, while the
keyword-based version of the same query is used as input for SODA.

The input query is also interpreted as an expected output of the previous operator within the
same test case, with the exception of the first operator.

Since the by-nl operator is the only one that generates SQL statements as output but does
not require a SQL statement as input, it will always be used as the first operator in all test
cases. This is because the natural language/keyword query that the by-nl operator takes as
input is given by the user. It is also worth mentioning that by-nl can be applied again later in
the sequence of operators that forms a test case. This simulates the user’s editing of the
natural language explanation that accompanies a SQL statement produced by the previous
operator. As a result, the edited natural language expression will be processed by the system
as a natural language query.

The “params” attribute is used to hold any additional parameters that are specific to certain
operators. For the operators by-nl, by-recommendation and by-superset, the “params”
attribute is left as an empty object, since they do not require additional parameters. In the
case of the operator by-facet, an additional parameter is required to indicate which of the

Page 7 of 35

D9.1 – 1st Test Report

columns returned by the input query is to be used to define groups. This is done by adding a
“column” attribute to the “params” object with the name of the column as its value:

“params”: { “column”: string }

Similarly, the by-facet operator requires additional parameters to indicate the column, value
and data type to be used as a filter. The filter in question will be a condition of the form:
column = value. These three elements are specified by means of adding the attributes
“column”, “value” and “type” to the “params” object:

“params”: {
“column”: string,
“value”: string,
“type”: string

}

The accepted data types to be used as values for the “params”.”type” attribute are “String”
and “Number”. The data type refers to both the column and value used in the filter, that is,
the column and value should be of the same type so that they can be safely compared.

1.3 Example of Test Case Specification

In this section, we show an example of a user interaction with INODE-SQL and how this
would be encoded using the specification format defined in the previous section.

A typical user interaction with INODE-SQL begins with the selection of the database to work
with and the introduction of a natural language query, all via the OpenDataDialog
application’s frontend as shown in Figure 1.2. The user can also choose the natural language
services to use in the query’s processing. However, for the purpose of testing, we focus on
SODA and ValueNet, since these are the two systems developed within the INODE project.
Therefore, we assume the user unchecks the Nalir+ system.

This first step in the user interaction is encoded in the test case specification by means of
adding a new JSON object to the array of test cases. This object holds the “database”
parameter that will be common to all the operators applied by the user during the test case.
For this example, we assume the user chooses to use the CORDIS dataset:

{
“testCases”: [

{
“name”: “Example Test Case”,
“database”: “cordis”,
“operators”: []

}
]

}

Page 8 of 35

D9.1 – 1st Test Report

Figure 1.2. Manual application of the by-nl operator by a user.

Regarding the natural language query that kickstarts the data exploration, we assume the
user introduces the query “Find projects where Alberto Broggi was involved”, so we encode
this by adding a nested object into the “operators” array:

“operators”: [
{

"type": "by-nl",
"inputQuery": "Find projects where Alberto Broggi was involved|Find

projects with Alberto BROGGI",
"params": {}

}
]

The execution of the by-nl operator returns a set of tables to the user, which in the frontend
are visualized by means of the multi-table explorer component as shown in Figure 1.3.

For the next step, we assume the user wants to apply the by-superset operator on the first
table that was returned by the natural language query. To do this in the frontend, the user
uses the contextual menu of the first table and clicks on the “Explore by superset” option
(see Figure 1.4).

To simulate this application of by-superset in the automated test case, we add a new
operator JSON object into the “operators” array, right after the object for by-nl that we
added before:

Page 9 of 35

D9.1 – 1st Test Report

Figure 1.3. Result of by-nl operator in OpenDataDialog’s frontend.

Figure 1.4. A user’s manual application of by-superset on a table.

“operators”: [
…,
{

"type": "by-superset",
"inputQuery": "SELECT * FROM people, projects WHERE ((people.full_name

like '%Alberto BROGGI%')) AND
(people.unics_id=projects.principal_investigator)",

"params": {}
}

]

The JSON object for the by-superset operator contains as “inputQuery” the SQL statement
that generated the selected table by the user. In the frontend, the user can see this SQL
statement by hovering the mouse over the natural language explanation of the table (see
Figure 1.5).

Page 10 of 35

D9.1 – 1st Test Report

Figure 1.5. The SQL statement that generated a table is shown as a tooltip when hovering
the mouse over the table’s natural language explanation.

The execution of by-superset produces a new set of tables that replaces the previous one on
the multi-table explorer. In this particular case, there is only one table in the set.

At this point, the user can apply a new operator on the returned table. For example, let us
assume that the user wants to apply the by-facet operator on the “projects.ec_call” column.
To do this, the user opens the contextual menu for the corresponding column and clicks on
the “Explore by facet” option (see Figure 1.6).

Figure 1.6. A manual application of the by-facet operator.

This interaction is encoded into the test case specification by adding a new JSON object into
the “operators” array, following the objects that were previously added for by-nl and
by-superset:

“operators”: [
…,
{

"type": "by-facet",
"inputQuery": "SELECT * FROM projects, people WHERE

projects.principal_investigator = people.unics_id",
"params": { “column”: “projects.ec_call” }

}
]

As in the previous case, the input query for the by-facet operator is the SQL statement that
corresponds to the table to which the column we are applying the operator belongs to.
Additionally, by-facet has an extra parameter “column” that is added into the “params”
object. This extra parameter indicates the name of the table’s column on which we are
applying the operator.

Page 11 of 35

D9.1 – 1st Test Report

To conclude the example, let us assume that the user applies a final operator to one of the
tables obtained from the by-facet operator. The operator is by-filter, and it is applied on a
specific cell of the table. The filter will apply a condition “column = value” where the column
and value are determined by the cell on which the operator is applied. In the frontend
interface, the user applies the by-filter operator by using the contextual menu of the
corresponding table cell and choosing the option “Explore by filter” (see Figure 1.7).

Figure 1.7. A user applying the by-filter operator on a table’s cell.

Similar to the previous operators, we can encode this final user interaction into the test case
specification by adding another JSON object at the end of the “operators” array:

“operators”: [
…,
{

"type": "by-filter",
"inputQuery": "SELECT * FROM projects, people WHERE

projects.principal_investigator = people.unics_id AND projects.ec_call =
'ERC-2013-CoG'",

"params": {
“column”: “projects.start_year”,
“value”: “2014”,
“type”: “Number”

}
}

]

In this case, the operator requires three extra parameters, namely the column, value and
data type of the table cell on which we are applying the operator. These are added to the
“params” object as three separate attributes. The input query, as in the previous two
operators, corresponds to the SQL statement that generated the table in question.

1.4 Summary of Test Results

This section summarizes the results of the test cases that have been performed on the
INODE-SQL 2.0 system for the CORDIS and SDSS datasets.

For each test case, we show a table with the results of the operators involved. We indicate
the type of operator, the input query, the status of the test, the execution time (measured in
seconds) and the result. The status of the test can be either OK, ERROR or WARNING.

Page 12 of 35

D9.1 – 1st Test Report

Regarding the result, we indicate how many tables were produced by the operator or, in case
the operator failed, the error message.

Since the system is still a work in progress, some test cases are expected to fail, as they point
out issues that will be improved and worked upon during the remainder of the project.

We can see a warning in Test Case 1, which is due to the current non-deterministic nature of
the by-recommendation operator. This means that the exact set of recommendations
returned by the operator may change slightly between executions even though the input
query remains the same. This causes the verification step at the beginning of each operator
test to fail, since the input query of the operator that is applied after by-recommendation is
not found in the by-recommendation’s output. We mark this as a warning rather than an
error, since it is an effect of the automation of the use case and it would not happen in a live
situation where a human user is interacting with the system.

As mentioned, the test cases include some examples of operators receiving input queries
that are still not supported, which causes them to fail. We can see this for the case of
by-recommendation in Test Case 2, for the SQL-to-Natural Language service (which is
executed behind the scenes for each operator) in Test Case 4 and Test Case 9, and for
ValueNet (by-nl operator) in Test Case 8. These are known limitations of the current release
that will be improved during the second half of the project, when these test cases are
expected to go from ERROR to OK.

1.4.1 Cordis dataset

Test Case 1

Operator Query Status Time Result

by-nl Find all
projects|Find all
projects

OK 2.2116389
second(s)

4 table(s)

by-recommendation SELECT * FROM
project_subject_ar
eas

OK 5.6037486
second(s)

7 table(s)

by-superset SELECT * FROM
project_subject_ar
eas where project
< 160324.5 and
project >=
151707.5

WARNING 0.4760852
second(s)

1 table(s)
Operator's input
query not present in
previous operator's
output

Page 13 of 35

D9.1 – 1st Test Report

by-filter SELECT * FROM
project_subject_ar
eas

OK 0.2006989
second(s)

1 table(s)

Test Case 2

Operator Query Status Time Result

by-nl Find projects that started
after 2018|project start_year
>2018

OK 6.392262
second(s)

4 table(s)

by-facet SELECT * FROM
project_erc_panels, projects
WHERE
((projects.start_year>2018))
AND
(project_erc_panels.project=
projects.unics_id)

OK 1.102569
6
second(s)

5 table(s)

by-facet SELECT * FROM projects,
project_erc_panels WHERE
projects.unics_id =
project_erc_panels.project
AND projects.start_year =
2018.0 and
project_erc_panels.panel =
'PE5'

OK 0.442312
4
second(s)

4 table(s)

by-superset SELECT * FROM projects,
project_erc_panels WHERE
projects.unics_id =
project_erc_panels.project
AND projects.start_year =
2018.0 and
project_erc_panels.panel =
'PE5' and projects.ec_call =
'ERC-2017-STG'

OK 0.270621
4
second(s)

1 table(s)

by-recommendation SELECT * FROM projects,
project_erc_panels WHERE
projects.unics_id =
project_erc_panels.project
AND

ERROR Unsupported
input query

Page 14 of 35

D9.1 – 1st Test Report

project_erc_panels.panel =
'PE5' and projects.ec_call =
'ERC-2017-STG'

Test Case 3

Operator Query
Stat
us Time Result

by-nl Find projects that started before
2018|project start_year < 2018

OK 413.6103965
second(s)

4
table(s)

by-recommendation SELECT * FROM
project_members, projects
WHERE
((projects.start_year<2018)) AND
(project_members.project=projec
ts.unics_id)

OK 920.067432
second(s)

23
table(s)

Test Case 4

Operator Query Status Time Result

by-nl Find institutions located in
Italy|Find institutions Italy

OK 11.8196104
second(s)

3 table(s)

by-superset SELECT
T1.institutions_name FROM
institutions AS T1 JOIN
countries AS T2 ON
T1.country_id = T2.unics_id
WHERE T2.country_name =
'Italy'

OK 1.7350534
second(s)

1 table(s)

by-recommendation SELECT * FROM institutions,
countries WHERE
institutions.country_id =
countries.unics_id

ERROR Missing NL
explanation

Page 15 of 35

D9.1 – 1st Test Report

Test Case 5

Operator Query Status Time Result

by-nl Find projects where Alberto Broggi was
involved|Find projects with Alberto
BROGGI

OK 4.2821569
second(s)

2
table(s)

by-superset SELECT * FROM people, projects WHERE
((people.full_name like '%Alberto
BROGGI%')) AND
(people.unics_id=projects.principal_inve
stigator)

OK 1.3783319
second(s)

1
table(s)

by-facet SELECT * FROM projects, people WHERE
projects.principal_investigator =
people.unics_id

OK 2.4823867
second(s)

5
table(s)

by-filter SELECT * FROM projects, people WHERE
projects.principal_investigator =
people.unics_id AND projects.ec_call =
'ERC-2013-CoG'

OK 0.3047024
second(s)

1
table(s)

Test Case 6

Operator Query Status Time Result

by-nl How many projects started in
2016?|count(project) start_year = 2016

OK 3.5499375
second(s)

4 table(s)

by-nl Find projects whose start year is
2016|Find projects whose start year is
2016

OK 120.1183993
second(s)

4 table(s)

Page 16 of 35

D9.1 – 1st Test Report

Test Case 7

Operator Query Status Time Result

by-nl What's the total cost of all
projects?|projects sum(total_cost)

OK 3.3498224
second(s)

4
table(s)

by-nl Find the sum of total costs of
projects started in 2016|Find the sum
of total costs of projects started in
2016

OK 146.1818575
second(s)

4
table(s)

by-superset SELECT sum(T1.total_cost) FROM
projects AS T1 WHERE T1.start_year
= 2016

OK 77.4844296
second(s)

1
table(s)

Test Case 8

Operator Query Status Time Result

by-nl Find the topics of projects that ended
in 2014|project_topics end_year =
2014

ERROR ValueNet failed to
answer

Test Case 9

Operator Query Status Time Result

by-nl Find projects with a member from
Greece|projects name=Greece

OK 3.7594545
second(s)

2 table(s)

by-nl Find the title and starting year of
projects with a member from
Greece|Find the title and starting year
of projects with a member from Greece

ERROR Missing NL
explanation

Page 17 of 35

D9.1 – 1st Test Report

Test Case 10

Operator Query Status Time Result

by-nl List all projects under the FP7-ICT
programme|projects programme
FP7-ICT

OK 3.240206
second(s)

3
table(s)

by-superset SELECT T1.project FROM
project_programmes AS T1
WHERE T1.programme = 'FP7-ICT'

OK 0.4607939
second(s)

1
table(s)

by-recommendation SELECT * FROM
project_programmes

OK 3.3189414
second(s)

4
table(s)

Test Case 11

Operator Query Status Time Result

by-nl Find all projects connected with
institutes located in Schaffhausen
area|projects institutes
eu_territorial_units Schaffhausen

OK 140.1998392
second(s)

4 table(s)

by-filter SELECT * FROM eu_territorial_units,
project_members, projects WHERE
(eu_territorial_units.nuts_code=project_
members.nuts3_code) AND
(project_members.project=projects.unic
s_id)

OK 0.7564124
second(s)

1 table(s)

by-facet SELECT * FROM project_members,
projects, eu_territorial_units WHERE
project_members.project =
projects.unics_id AND
project_members.nuts3_code =
eu_territorial_units.nuts_code AND
eu_territorial_units.nuts_code = 'NL329'

OK 2.5711141
second(s)

5 table(s)

Page 18 of 35

D9.1 – 1st Test Report

1.4.2 SDSS dataset

Test Case 12

Operator Query Status Time Result

by-nl count(type) type= 6 OK 66.2953099
second(s)

3
table(s)

by-nl type=6 OK 11.4440518
second(s)

3
table(s)

by-filter SELECT * FROM photoobj WHERE
((photoobj.type_i=6))

OK 7.8943731
second(s)

1
table(s)

Test Case 13

Operator Query Status Time Result

by-nl count(all) survey segue2 OK 10.1853495
second(s)

3
table(s)

by-nl survey segue2 OK 8.8422255
second(s)

3
table(s)

by-facet SELECT * FROM specobj WHERE
((specobj.programname like '%segue2%'))

OK 39.0309774
second(s)

5
table(s)

Test Case 14

Operator Query Status Time Result

by-nl type= 3 OK 12.1450108
second(s)

3
table(s)

by-facet SELECT * FROM photoobj
WHERE ((photoobj.type=3))

OK 32.5659334
second(s)

5
table(s)

Page 19 of 35

D9.1 – 1st Test Report

by-recommendation select photoobj.objid,
photoobj.type, photoobj.clean,
photoobj.ra, photoobj.dec,
photoobj.u, photoobj.g,
photoobj.r, photoobj.i,
photoobj.z FROM photoobj
WHERE photoobj.type = 3.0 and
photoobj.ra > 137.13114622077
and photoobj.ra <=
156.015151078751

OK 36.7535051
second(s)

17
table(s)

Test Case 15

Operator Query Status Time Result

by-nl specobjid galspecline OK 7.6288615
second(s)

2
table(s)

by-superset SELECT * FROM galspecline, specobj
WHERE
(galspecline.specobjid=specobj.speco
bjid)

OK 4.6976364
second(s)

1
table(s)

by-facet SELECT * FROM specobj, galspecline
WHERE specobj.specobjid =
galspecline.specobjid

OK 51.3292684
second(s)

5
table(s)

Test Case 16

Operator Query Status Time Result

by-nl photoobj type =6 OK 17.0871967
second(s)

3
table(s)

by-recommendation select photoobj.objid,
photoobj.type, photoobj.clean,
photoobj.ra, photoobj.dec,
photoobj.u, photoobj.g,
photoobj.r, photoobj.i,
photoobj.z FROM photoobj
WHERE ((photoobj.type_z=6))

OK 121.5473569
second(s)

17
table(s)

Page 20 of 35

D9.1 – 1st Test Report

by-superset select photoobj.objid,
photoobj.type, photoobj.clean,
photoobj.ra, photoobj.dec,
photoobj.u, photoobj.g,
photoobj.r, photoobj.i,
photoobj.z FROM photoobj
WHERE ((photoobj.type_z=6))
and clean < 0.5

OK 32.8233948
second(s)

1
table(s)

Page 21 of 35

D9.1 – 1st Test Report

2 TESTING INODE-SPARQL 1.0

In this section we describe the automatic testing of the INODE-SPARQL services. These
services have not yet been integrated into a single application, so we test them separately. As
with INODE-SQL, we focus here on functionality and leave performance testing as future
work. We do report execution times as part of the test results, but these are merely
informative.

The SPARQL services that are presently available are the endpoints for the three application
domains of INODE, and the Bio-SODA service for answering natural language queries over
RDF data.

We focus on testing the online components of INODE-SPARQL. The offline work is tested
indirectly since this work has a direct impact on the state of the online components. Offline
work includes:

● Ontology and mapping construction for the three use cases.
● Enrichment of the datasets by extracting data from unstructured text.

The ontology and mapping construction is essential to the inner workings of the SPARQL
endpoints. These are powered by the Ontop software, which exposes the underlying
relational data as a virtual knowledge graph using a mapping that connects each database
with the corresponding ontology.

The information extraction from unstructured text has resulted in new information being
added into the datasets. This means new tables added to the relational databases, but also
new classes and properties added to the ontologies to reflect this new data.

2.1 Architecture of the Automatic Testing System

The testing application runs queries against the SPARQL endpoints of the three domains of
application, and also against the two instances of Bio-SODA that are currently available for
the “R&I Policy Making” (CORDIS dataset) and “Astrophysics” (SDSS dataset) use cases. The
Bio-SODA endpoint for “Cancer Research” will be developed during the second half of the
project.

The test cases are specified in a single JSON file that the testing application takes as input.
Each test case defines either a SPARQL query to be executed on one of the endpoints, or a
natural language query to be sent to one of the Bio-SODA instances. The results of the tests
are published as an HTML report.

The testing application executes the test cases sequentially, with a 20-minute timeout. If the
corresponding SPARQL or natural language query succeeds and produces a non-empty result,
the test passes. Otherwise, if the query’s execution ends up returning an error, or if the
timeout is reached, then the test fails.

This architecture is graphically depicted in Figure 2.1.

Page 22 of 35

D9.1 – 1st Test Report

Figure 2.1. Architecture of the testing system for INODE-SPARQL 1.0.
Input: Test case specification in JSON format. Output: HTML report of the test results.

2.2 Structure of the Test Case Specification File

The test cases for INODE-SPARQL are specified all together in a single JSON file. The contents
of this file is a JSON object with the following structure:

{ “testGroups”: [testGroup1, testGroup2, ...] }

where each testGroupi is a nested object in the form of:
{

“name”: string
“type”: string
“url”: string,
“testCases”: [testCase1, testCase2, ...]

}

A test group represents the set of test cases of a particular component of INODE-SPARQL. It
is identified by a name, and has two properties that are common to all the included test
cases, namely the type and url of the component being tested. The type can be either
“sparql” or “biosoda”, while the url specifies which SPARQL endpoint or Bio-SODA instance
the test group refers to.

The test cases inside a test group are also specified by means of nested objects. These hold
the details that are specific to each test case. Each testCasei has the following form:
{

“description”: string,
“query”: string

}

Page 23 of 35

D9.1 – 1st Test Report

The description of a test case is a natural language explanation of the SPARQL query’s
meaning, while the “query” attribute holds the actual SPARQL query.

2.3 Example of Test Case Specification

The test cases targeted at the SPARQL endpoints simulate the user going into the
corresponding endpoint’s web page and manually writing and executing a given SPARQL
query. For example, for the SDSS dataset, a user can go into the endpoint and write a query
to do a rectangular search of the sky using straight coordinate constraints as shown in Figure
2.2.

Figure 2.2. A manually written SPARQL query on the SDSS SPARQL endpoint.

This test case would be specified by means of defining a test group that targets the SDSS
SPARQL endpoint and includes the appropriate query:
{

“testGroups”: [
{
"name": "SDSS SPARQL endpoint",
"type": "sparql",
"url": url of the SDSS SPARQL endpoint,
"testCases": [

{
"description": "Rectangular search using straight coordinate

constraints",
"query": "PREFIX : <http://www.semanticweb.org/skyserver/>

SELECT ?q ?ra ?dec ?mag_i ?mag_r ?redshift
WHERE {?q a :SpecQuasar;

:right_ascension ?ra; :declination ?dec;
:redshift ?redshift;
:hasPhotometry ?pq;
:hasSpectroWarning \"no\" .
?pq :psfmagnitude_i ?psfmag_i;
:extinction_i ?extinction_i;
:psfmagnitude_r ?psfmag_r;
:extinction_r ?extinction_r;

BIND((?psfmag_i-?rextinction_i) AS ?mag_i)
BIND((?psfmag_r-?extinction_r) AS ?mag_r) } LIMIT 100"
}

]
}

]
}

Page 24 of 35

http://www.semanticweb.org/skyserver/

D9.1 – 1st Test Report

The SPARQL query is provided in the nested JSON object’s “query” attribute, while a textual
description of the query’s meaning is given in the “description” attribute.

Similarly, the test cases for Bio-SODA simulate a user going into the corresponding Bio-SODA
web page and typing a natural language query as shown in Figure 2.3.

Figure 2.3. A manually written natural language query on Bio-SODA for the SDSS dataset.

This test case would be specified by means of a test group of type “biosoda” that includes
the corresponding natural language query:
{

“testGroups”: [
…,
{

"name": "Bio-SODA for SDSS",
"type": "biosoda",
"url": url of biosoda for SDSS,
“testCases”: [

{
"description": "show all hot massive blue stars",
"query": "show all hot massive blue stars"

}
]

}
]

}

In this case, the “description” and “query” attributes of the nested JSON object can be the
same since the query is already in natural language and descriptive enough.

2.4 Summary of Test Results

2.4.1 CORDIS SPARQL endpoint

The following table shows the results of the test cases executed on the Ontop-powered
SPARQL endpoint of the CORDIS dataset. For brevity, the “Query” column shows the natural
language description of the queries rather than the full SPARQL code. The “Status” column
indicates the success or failure of the test. The “Time” and “Result” columns show the
execution time and the size of the result (in number of rows) of each query, respectively.

We can see three expected test failures that are due to the involved SPARQL queries using
the EXISTS and NOT EXISTS filters, which are not yet supported by Ontop.

Page 25 of 35

D9.1 – 1st Test Report

Query Status Time Result

What is the city of Opel Automobile? OK 0.9447738
second(s)

2 row(s)

What is the country code of latvia? OK 0.0494957
second(s)

1 row(s)

Projects funded by the fp7 program OK 0.9383246
second(s)

25778 row(s)

Projects in the area of mathematics OK 0.120523
second(s)

239 row(s)

Projects in mass spectrometry OK 0.1585998
second(s)

16 row(s)

show ERC research domains in the diagnostics
tools panel

OK 0.1444262
second(s)

426 row(s)

What are the participants of the project alfred? OK 0.2885529
second(s)

14 row(s)

Starting year of the project theseus OK 0.1033094
second(s)

4 row(s)

Organizations in the eawareness project OK 0.2002004
second(s)

1 row(s)

Ending year of projects in the area of climate
change

OK 0.095011
second(s)

62 row(s)

Panels of projects in genome editing OK 0.1724891
second(s)

5 row(s)

Projects starting in 2019 with the university of
zurich

OK 0.1849206
second(s)

17 row(s)

Count the ERC projects in the applied life
sciences domain

OK 0.0504244
second(s)

1 row(s)

Page 26 of 35

D9.1 – 1st Test Report

Topics of projects in life sciences OK 0.5389166
second(s)

4463 row(s)

Linguistics projects related to the human mind OK 0.0490751
second(s)

2 row(s)

All projects that started in 2015 in switzerland OK 0.4493259
second(s)

1066 row(s)

ERC projects whose principal investigator is
Michael Smith

OK 0.0808678
second(s)

1 row(s)

Grants received by projects in big data OK 0.3642301
second(s)

1019 row(s)

Total grants received by projects in the area of
materials technology

OK 0.1612239
second(s)

1 row(s)

Projects starting in 2016 whose host is the
university of zurich

OK 0.3123766
second(s)

9 row(s)

Full name of principal investigators of projects
hosted in france

OK 0.5385834
second(s)

586 row(s)

Titles of erc projects with coordinators and
their geographic location

OK 1.6288298
second(s)

11761 row(s)

Universities which are coordinators in climate
change projects

OK 0.5964093
second(s)

1877 row(s)

Countries with no projects ERROR Unsupported
query

Projects with a cost higher than 1 million OK 1.3043394
second(s)

25744 row(s)

Projects started after November 2019 OK 0.1470067
second(s)

451 row(s)

projects including participants from greece
and romania

ERROR Unsupported
query

Page 27 of 35

D9.1 – 1st Test Report

Projects not including participants from greece
nor romania

ERROR Unsupported
query

Find the project with the highest funding OK 0.8438056
second(s)

1 row(s)

Find the country with the highest number of
projects

OK 1.4694185
second(s)

1 row(s)

Find projects similar to the one with acronym
EPNET

OK 0.094106
second(s)

3 row(s)

2.4.2 SDSS SPARQL endpoint

The following table shows the results of the tests performed on the Ontop-powered SPARQL
endpoint of the SDSS dataset. As in the CORDIS case, the “Query” column shows the natural
language description of the query instead of the full SPARQL code.

Query Status Time Result

Find unique objects in an RA/Dec box OK 0.1315734
second(s)

318
row(s)

Find galaxies with g magnitudes between 18 and 19 OK 0.0507794
second(s)

10
row(s)

Rectangular search using straight coordinate
constraints

OK 1.1033571
second(s)

100
row(s)

Retrieve both magnitudes (from photometry) and
redshifts (from spectroscopy) of quasars

OK 0.0793449
second(s)

100
row(s)

count the number of spectra of each spectral
classification (galaxy, quasar, star)

OK 6.0722554
second(s)

3
row(s)

show all spec galaxies with ascension < 130
declination > 5

OK 5.7851578
second(s)

100
row(s)

show all photo galaxies with magnitude_g <= 23
ascension < 130 declination > 5

OK 11.9255391
second(s)

100
row(s)

Page 28 of 35

D9.1 – 1st Test Report

show all photo asteroids with mode of photo
observation 1

OK 16.6689811
second(s)

2
row(s)

Show white dwarfs with redshift > 0 OK 0.1683359
second(s)

100
row(s)

show all hot massive blue stars OK 0.2224401
second(s)

100
row(s)

show all spec stars with plate number 1760 OK 0.465288
second(s)

15
row(s)

show all spec stars with the subclass WDhotter OK 0.0846733
second(s)

100
row(s)

Show the redshifts of all spectroscoscopies of
quasars

OK 0.0564564
second(s)

100
row(s)

show all quasars with ascension > 120 and declination
> 5.2

OK 0.0569022
second(s)

100
row(s)

show all star burst galaxies with velocity dispersion >
800

OK 1.3112031
second(s)

100
row(s)

2.4.3 OncoMX SPARQL endpoint

The following table shows the results of the tests performed on the Ontop-powered SPARQL
endpoint of the OncoMX dataset. As with the CORDIS and SDSS cases, the “Query” column
shows the natural language description of the query instead of the SPARQL code.

Query Status Time Result

Cancer single biomarkers and their descriptions OK 1.615295
second(s)

931
row(s)

Cancer single biomarkers for breast cancer OK 0.3787531
second(s)

172
row(s)

Page 29 of 35

D9.1 – 1st Test Report

Cancer biomarker panels and their descriptions
including indicated cancer type

OK 0.5142104
second(s)

162
row(s)

All cancer types in the database OK 121.1509951
second(s)

43 row(s)

All information about species in the database OK 0.1016335
second(s)

10 row(s)

What are the cancer types where the A1BG gene
expression is increased (up regulated)

OK 30.0814054
second(s)

8 row(s)

What are the cancer types where the A1BG gene
expression is statistically significantly increased (up
regulated)

OK 43.6702942
second(s)

4 row(s)

What are the healthy organs where the A1BG is
expressed

OK 0.1649414
second(s)

74 row(s)

What are the healthy organs in human where the
A1BG is not expressed

OK 0.2117581
second(s)

57 row(s)

Biomarkers related to breast at the EDRN phase one OK 29.2211621
second(s)

18 row(s)

What are the genomic biomarkers for breast cancer? OK 0.2847917
second(s)

4 row(s)

2.4.4 Bio-SODA for CORDIS

The following table lists the results of the tests performed on Bio-SODA for the CORDIS
dataset. The “Query” column reports the natural language query that is the input of
Bio-SODA. The “Result” column indicates the number of SQL interpretations found by
Bio-SODA.

Page 30 of 35

D9.1 – 1st Test Report

Query Status Time Result

what is the city of opel automobile? OK 2.7005263
second(s)

10
interpretation(s)

what is the country code of latvia? OK 4.0636001
second(s)

10
interpretation(s)

projects funded by the fp7 program OK 9.294793
second(s)

10
interpretation(s)

projects in the area of mathematics OK 6.2149723
second(s)

10
interpretation(s)

projects in mass spectrometry OK 6.1702605
second(s)

10
interpretation(s)

show ERC research domains in the
diagnostics tools panel

OK 1.2999919
second(s)

10
interpretation(s)

what are the participants of the project alfred OK 11.7598201
second(s)

10
interpretation(s)

Starting year of the project theseus OK 7.383448
second(s)

10
interpretation(s)

organizations in the eawareness project OK 9.0083834
second(s)

10
interpretation(s)

ending year of projects in the area of climate
change

OK 9.5115913
second(s)

10
interpretation(s)

panels of projects in genome editing OK 6.7781013
second(s)

9
interpretation(s)

projects starting in 2019 with the university of
zurich

OK 8.8023423
second(s)

10
interpretation(s)

count the ERC projects in the applied life
sciences domain

OK 1.5645649
second(s)

10
interpretation(s)

Page 31 of 35

D9.1 – 1st Test Report

topics of projects in life sciences OK 5.9510376
second(s)

10
interpretation(s)

linguistics projects related to the human mind OK 5.1890979
second(s)

10
interpretation(s)

All projects that started in 2015 in switzerland OK 9.0910271
second(s)

10
interpretation(s)

ERC projects whose principal investigator is
Michael Smith

OK 0.2562195
second(s)

2
interpretation(s)

grants received by projects in big data OK 5.6144143
second(s)

10
interpretation(s)

total grants received by projects in the area of
materials technology

OK 6.7478131
second(s)

10
interpretation(s)

projects starting in 2016 whose host is the
university of zurich

OK 5.7676314
second(s)

10
interpretation(s)

full name of principal investigators of projects
hosted in france

OK 10.7205081
second(s)

10
interpretation(s)

titles of erc projects with coordinators from
piemonte

OK 1.8668707
second(s)

10
interpretation(s)

universities which are coordinators in climate
change projects

OK 5.4404761
second(s)

10
interpretation(s)

countries with no projects OK 0.7676488
second(s)

10
interpretation(s)

projects with a cost higher than 1 million OK 5.5270729
second(s)

10
interpretation(s)

projects started after November 2019 OK 7.7705004
second(s)

10
interpretation(s)

projects including organizations from greece
and romania

OK 3.6111342
second(s)

10
interpretation(s)

Page 32 of 35

D9.1 – 1st Test Report

projects not including organizations from
greece nor romania

OK 2.6492122
second(s)

10
interpretation(s)

find the project with the highest funding OK 6.4535117
second(s)

10
interpretation(s)

find the country with the highest number of
projects

OK 6.4062802
second(s)

10
interpretation(s)

2.4.5 Bio-SODA for SDSS

The following table shows the results of the tests performed on Bio-SODA for the SDSS
dataset. We can see a timeout on one of the tests, since that particular query takes longer
than the 20-minute limit set up for each test.

Query Status Time Result

show all spec galaxies with ascension < 130
declination > 5

OK 24.8047582
second(s)

5
interpretation(s)

show all photo galaxies with magnitude_g <=
23 ascension < 130 declination > 5

OK 42.0476488
second(s)

5
interpretation(s)

show all photo asteroids with mode of photo
observation 1

OK 1.5283111
second(s)

1
interpretation(s)

show white dwarfs with redshift > 0 OK 2.8264661
second(s)

2
interpretation(s)

show all hot massive blue stars OK 0.1978928
second(s)

1
interpretation(s)

show all spec stars with plate number 1760 OK 1.7333888
second(s)

5
interpretation(s)

show all spec stars with the subclass
WDhotter

OK 132.6419338
second(s)

5
interpretation(s)

redshift of spectroscopy with class QSO ERROR Read timed out

Page 33 of 35

D9.1 – 1st Test Report

show all quasars with ascension > 120 and
declination > 5.2

OK 27.3872073
second(s)

5
interpretation(s)

show all star burst galaxies with velocity
dispersion > 800

OK 2.6380886
second(s)

2
interpretation(s)

Page 34 of 35

